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Abstract

The promise of the inflationary Universe scenario is to free the present state of
the Universe from extreme dependence on initial data. Paradoxically, inflation is
usually a.na.lyzedrin the context of the homogeneous and isotropic Robertson.- Walker
(RW) cosmological models. We show that all but a small subset of the homogeneous
models (the Bianchi models) undergo inflation. Any initial anisotropy is so strongly
damped that if sufficient inflation occurs to solve the flatness/horizon problems
the Universe today would still be very isotropic. Some of the Bianchi models will

eventually (in the exponentially distant future) become very anisotropic again.
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Introduction

The most attractive feature of the inflationary Universe scenario’ is that it offers the p;ssi-
bility of freeing the present state of the Universe, in regions as large as the present Hubble
volume (H™! =~ 10%%¢m), from extreme sensitivity to the initial state of the Universe.
Since it is very unlikely that we will ever be privy to the initial data for the Universe this
is indeed a very attractive attribute of inflation (for an alternative point of view, see ref.
2). This extreme reliance upon initial data was emphasized by Collins and Hawking® who
demonstrated that without inflation the set of initial data which evolved into a model Uni-
verse which resembles ours at the current epoch is of measure zero. While inflation holds
the potential to free us from the initial data, for simplicity, it is almost always analyzed
within the context of an isotropic and homogeneous RW cosmological model. A key issue
confronting inflation then, is which subset of initial data for Einstein’s equations undergo
sufficient inflation to evolve to a model universe with large regions which resemble our
present Hubble volume. Clearly not all the initial data do. A trivial counterexample is a

very closed RW model which recollapses before it can inflate.

Here we consider all of the homogeneous models, the nine Bianchi classes. These
models are homogeneous, but do not expand isotropically. Wald* has shown that with the
exception of a subset of Bianchi IX models, those which have very large positive spatial
curvature, all Bianchi models with a positive cosmological constant asymptotically evolve
to de Sitter space. In inflationary Universe models, the Universe does not in the strictest
sense have a true cosmological term. Rather there is a vacuum energy density which
depends upon an order parameter (usually the expectation value of some scalar field).

So long as the scalar field is displaced from the zero energy minimum of its potential
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and is slowly evolving, the vacuum energy is approximately constant and behaves like a
cosmological term. The issue then is a dynamical one; does the Universe evolve into a

deSitter state before the scalar field reaches the minimum of its potential?

Previously it was shown that in the context of old inflation large anisotropy could
prevent inflation by causing tiae scalar field to evolve too rapidly, thereby prematurely
eliminating the effective cosmological term®. [If this did not occur, however, the authors
showed that the initial anisotropy was indeed strongly damped.] More recently, Steigman
and Turner® have shown that unlike old inflation, new inflation could not be prevented
by anisotropy (i.e., models which would inflate in the absence of anisotropy, would inflate
in the presence of anisotropy, regardless of how much anisotropy was present). Recently,
- geveral authors have claimed that, while inflation does occur in anisotropic models, grow-
ing modes of anisotropy will again make the Universe anisotropic after inflation, thereby

defeating the best efforts of inflation”. This is the issue we will address in this Letter.

We will show that while some Bianchi models will indeed again become very anisotropic,
inflation postpones this event to an exponentially distant time into the future and that
models which inflate sufficiently to solve the horizon/flatness problems will today still be
very isotropic. In this regard it has been known for a long while now that inflation does
permanently render the Universe smooth within our Hubble volume; several authors have
shown that if there were curvature perturbations (i.e., scalar density perturbations) present
before inflation took place, then these perturbations will enter the horizon with the same
amplitude as they would have in the absence of inflation, but at a much later time®:S.
A finite epoch of inflation does not smooth the Universe globally, rather it creates large

smooth patches, sufficiently large to encompass our Hubble volume at this late date in the
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history of the Universe.

Bianchi Inflation

For detailed discussions of the Bianchi classification and models we refer the interested
reader to refs. 10-12. We denote the scale factors of the principal axes of the Universe
by X;, % = 1— 3, the expansion rates in these directions by h; = X.-/X.-, the proper
volume of a unit comoving volume element by V = X, X5X;, and the mean expansion
rate by H = R/R = LV /V = (hy + hg + h3)/3, where R = V*/? is the mean scale factor
of the Universe. We will assume that the stress-energy in the Universe is described by
a perfect, isotropic and homogeneous fluid with enrergy density p and isotropic pressure
p = vp- Such a fluid with v = 0 corresponds to non-relativistic matter; with 4 = 1/3 to
a relativistic gas in thermal equilibrium; and with 4 = —1 to vacuum energy. It follows

from the conservation of stress-energy that
p o V) (1)
In these spacetimes the equation of motion for a homogeneous scalar field ¢ with lagrangian
density £ = %¢2 —V(¢)is
$+3H$+V' =0 (2)
where overdot denotes a time derivative, prime a derivative with respect to ¢, and we use
units where h = ¢ = 817G = 1.

For all the Bianchi models except IV and VII, the equations for the evolution of the

scale factors can be written agl®!!
hi +3Hh; = F; + (p — p)/2 (3)

i}/V:Fx+F2+F3+3(P—P)/2 (4)
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where the F; depend upon the scale factors X;. For our purposes the crucial feature of the
F; is the fact that they decrease at least as fast as V~2/3, That is the only property of the
F; that we will use. Physically, that corresponds to an effective energy density associated
with anisotropy which decreases at least as fast as V=2/3 (or R—2), which means that the
fastest growing mode of anisotropy grows at the same rate as a curvature perturbation in
a RW model. For Bianchi I models the F; = 0; for Bianchi II, VI, VII, VIII, and IX the
F; o« V723,

For the Bianchi IV and VII, models the equations cannot be put into diagonal form;
there is an additional term on the rhs of Eqn(3), Gi(hs, X;:) (see refs. 11, 12). The G;
decrease at least as fast as ™™ (n > 1). For simplicity we will not specifically consider
these terms as they do not qualitatively alter our analysis.

Throughout we will use the F; to quantify the degree of anisotropy. To this end we
will denote the typical size of the Fy as F and will assume that F o V~—2/3, that is we
will take into account the most slowly-decaying mode of anisotropy. We will denote the

relative size of the anisotropy by
e=F/p (5)

We will also assume that initially ¢ is displaced from the minimum of its potential (e.g.,
due to initial conditions or thermal effects), and that, in the absence of anisotropy during
the time it takes ¢ to evolve to the minimum of its potential the scale factor of the
Universe grows by a factor of exp(N), i.e., the Universe inflates by N e-folds. We will not
be concerned with the detailed evolution of ¢ here; it will suffice to know just the total
number of e-folds. We should emphasize again that we are not addressing the question of

the initial value of ¢; we assume, as is done in the usual RW inflationary analysis, that ¢
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is not initially at the zero energy minimum of its potential.

For all but the subset of very-highly positively curved Bianchi IX models, the anisotropy
increases the mean expansion, thereby increasing the 3H¢ friction term in Eqn(2). For all
but these Bianchi IX models the work of Wald* and Steigman and Turner® implies that
the Universe will become dominated by vacuum energy {and become deSitter like) before
¢ evolves appreciably from its initial value. Once the Universe is deSitter like it will take
¢ the usual N Hubble times to evolve to the minimum of its potential, during which time
the Universe grows in size by a factor of exzp(N).

Wald’s result implies that asymptotically € — 0; for our purposes we will denote the
beginning of inflation to be the time when ¢ is sufficiently small, say ¢, ~ 0.1, so that F’

can be treated as a perturbation in Eqns(3,4). During inflation we have

P=X"[3=V($) = M* (6a)
vy —1 (6b)

VIV ~ X | (6¢c)

V o ezp(xt) (6d)

hi + xhi = F + x?/3 (6e)

where as usual we have ignored the kinetic term (1¢?) as it is much smaller than V(¢)
during inflation.

Taking F to vary as V—2/® « ezp(—2x/3t) and solving for h; and X; to order € we
obtain

h;

Il

(1 + Bepexp(—2xt/3)]x/3 + const exp(—xt) (7a)

X; o ezp[xt/3 — 1.5¢ exp(—2xt/3) — const exp(—xt)/x] (7b)
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where const is an irrelevant integration constant.

As the Universe inflates all the h; approach the usual RW inflationary value of x/3
exponentially fast, and F decreases as exp(—2x/3t), so that all the Bianchi models evolve
toward Bianchi I. Steigman and Turner® have shown that inflation will last the usual

number of e-folds, and so at the end of inflation
€. < min|e, glexp(—2N) (8)

since p remains constant during inflation and F decreases at least as fast as V=2/3. Note
that the valueof ¢, is independent of the initial value of € = ¢, provided that the initial
value was larger than about 0.1 or so. If ¢; < 0.1, then ¢, depends upon ¢; and is even
smaller, ¢, ~ ¢;exp(—2N).

Given ¢ at the end of inflation how does the anisotropy of the Universe then evolve.
To answer this we shall assume that after inflation p = vp with v # —1 agd that the
Universe goes through three subsequent phases: a post-inflation phase where the energy
density is dominated by coherent oscillations of thg ¢ field during which v = 0; a radiation-
dominated phase which begins when the ¢ particles decay, thereby reheating the Universe
(to a temperature Tpy); and finally the current matter-dominated phase which begins
when the Universe has a temperature of about 10eV and is about 10!%zec old.

We will now solve Eqns(3,4) for v # —1 and € << 1. Clearly after inflation € << 1
and the Univeres is very nearly RW, so that F can be treated as a small perturbation.

The relevant equations are then
VIV ~3(1-)p/2 (9)

SV o 20+
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hi +2hit™ (14 7) = F + (1 - 7)p/2 (10)

Treating F' as a perturbation which varies as ¥V ~2/3 and working to order ¢ we obtain:
hi = 27" /(3 + 37)[1+ 60/ (5 + 3)(t/1) @+ 7/ (427 (11)

where ’subscript o’ refers to the value of the quantity at the reference time ¢ = ¢,. From
Eqn{11) it is clear that e grows as ¢ (or R?) during a radiation-dominated epoch and
t2/* (or R) during a matter-dominated epoch. This is just as one would expect since the
fastest-growing mode of anisotropy varies as R~2, while p,og o« R™* and pypatter o R3.

We are now ready to compute the present anisotropy in the expansion of the Universe.
At the end of inflation ¢ is of order exp(—2N) or ¢;exp(—2N) if the Universe was never
dominated by anisotropy. While the energy density of the Universe is dominated by coher-
ent oscillations, from p ~ M* to p =~ Tru*, € grows as R, or by a factor or M"/a/TRH‘/s.
During the subsequent radiation-dominated phase, from T ~ Try — 10eV, € grows as
R?, or by a factor of 103%Ty,, where Try = T1010'°GeV. Finally, in the current matter-
dominated phase which begins when the Universe had a temperature of about 10eV, ¢ has
growa. by a factor of about 30,000. Bringing all of these factors together we find that the

present level of anistropy is at most
€today = min|l, e;lezp(—2N)10%8 M, 4/3T,,2/? (12)

The isotropy of the microwave background(6T/T < 10~*) constrains €qay to be less

about 10™4; sufficient inflation to guarantee this level of isotropy implies that
N > 575+ In(M,4°T)0)/3 (13)

which is precisely the amount of inflation required to solve the horizon/flatness problems?!3.

This is not surprising as the fastest-growing mode of anisotropy varies as R~2, just as the
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curvature of the Universe does. [For Bianchi IV and VII,, the effect of the G; terms modifies
Eqn(13): N > 243/n — 64 + (4/n — 4/3)In(M;4) + In(T10)/3.] If there are growing modes
of anisotropy, then the Universe will ultimately become very anisotropic again. Assuming
that the Universe continues to be matter-dominated and recalling that ¢ « R o t2/3
when the Universe is matter-dominated, it follows that ¢ will be of order unity when

L ~ tynis, Where
tunis ™ min[l,e,-]—aleM_ng—le:cp(SN — 159)10"%yr (14)
Because of the interrelation between the isotropy and flatness problems, at about the

same time, one would expect the Universe to become curvature-dominated, i.e., fl deviate

significantly from unity.

Summary

We have shown that all the Bianchi models, except for the subset of Bianchi IX models
which recollapse before they inflate, will undergo inflation and in the process become
highly isotropic. As in the RW inflationary model of inflation, we have assumed that the
scalar field responsible for inflation is initially displaced from the minimum of its potential.
Regardless of the initial level of anisotropy, all models will be isotropic today provided that
sufficient inflation occured to solve the flatness and horizon problems. In the exponentially
digtant future the Universe may again become anisotropic provided that initially there were
growing modes of anisotropy. As with the horizon and flatness problems inflation mefely
postpones the inevitable.

While inflation is almost always analyzed in the context of RW cosmological models,
our analysis indicates that all homogeneous models, less the aforementioned subset of very-

closed Bianchi IX models, undergo inflation in the usual way and in the process become
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highly isotropic. While this does not prove that inflation makes the present state of the
Universe on scales as large as our current Hubble volume insensitive to the initial state of
the Universe, it does go one step further toward establishing this conjecture.

Now that the homogeneous models seem to be in hand, the more difficult case of
inhomogeneous models must be addressed. In this regard, it has already been shown
that small inhomogeneities are no obstacle to inflation®®, and very recently Jensen and

Stein-Schabes!'4 have proven the analogue of Wald’s result* for inhomogeneous models.
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